
Tribhuvan University

Institute of Engineering

Kathmandu Engineering College

Department of Electronics and Computer Engineering

by

Er. Santosh Giri

Lecturer, IOE, Pulchowk Campus

Object Oriented Analysis and Design

[Subject Code: CT 651]

Date: August 17, 2020
1

Contents

Object Oriented Fundamentals →10 hrs,18 marks

© Introduction

© Object Oriented Analysis and Design

© Defining Models

© Case Study (NextGen point-of-sale (POS) system, Monopoly Game)

© Requirement Process

© Use Cases

© Object Oriented Development Cycle

© Overview of the Unified Modeling Language: UML Fundamentals and

Notations.

Object Oriented Analysis → 8 hrs, 14 marks

© Building Conceptual Model

© Adding Associations and Attributes

© Representation of System Behavior

2

Object Oriented Design →12 hrs, 21 marks

© Analysis to Design

© Describing and Elaborating Use Cases

© Collaboration Diagram

© Objects and Patterns

© Determining Visibility

© Class Diagram

Implementation →15 hrs, 27 marks

© Programming and Development Process

© Mapping Design to Code

© Creating Class Definitions from Design Class Diagrams

© Creating Methods from Collaboration Diagram

© Updating Class Definitions

© Classes in Code

© Exception and Error Handling.

Reference Book: Applying UML and Patterns →C. Larman

3

Pre-requisites

Object Oriented Programming
© Objects

© Attributes

© Class

© Methods

© Message passing & more

Software Engineering
© SDLC and Process Models.

© Requirement Engineering Process.

© Functional and Non-Functional Requirements.

© Agile Methodology*

© RUP-with Reference from Software Engineering* & more

Project Work
© UML Diagrams*

© Lab work*
4

Tribhuvan University

Institute of Engineering

Kathmandu Engineering College

Department of Electronics and Computer Engineering

by

Er. Santosh Giri

Lecturer, IOE, Pulchowk Campus

Chapter1: Object Oriented Fundamentals

10 Hrs, 18 Marks

Date: August 31, 2020
5

6

Object Oriented

Fundamentals

Chapter One

Object Oriented Fundamentals → 10 hours

Introduction

Object Oriented Analysis and Design

Defining Models

Case Study

Requirement Process

Use Cases

Object Oriented Development Cycle

Overview of the Unified Modeling Language: UML

Fundamentals and Notations

7

Encapsulation

© Encapsulation is the process of combining data and function into a single

unit called class.

8

Features of Object Oriented System

Abstraction

Example: ATM Machine

© We can perform operations on the ATM machine like cash withdrawal,

balance enquiry, retrieve mini-statement…etc.

but what about internal details i.e. How??

© Representing only necessary information, hiding the implementation details

is abstraction.

9

Inheritance

© Advantage: Reusability

10

Polymorphism

© Polymorphism means having many forms

© Polymorphism means that a call to a member function will cause a different

function to be executed depending on the type of object that invokes the

function.

© Example:

sum(a,b);

sum(a,b,c);

11

Structured Approach Object Oriented Approach

Top-down approach. Bottom-up approach.

Program is divided into number of sub

modules or functions.

Program is organized by having

number of classes and objects.

Function call is used. Message passing is used.

Software reuse is not possible. Reusability is possible.

Structured design programming

usually left until end phases.

Object oriented design programming

done concurrently with other phases.

DFD & E-R diagram are used to

model the data.

Class diagram, sequence diagram,

state chart diagram, and use cases all

contribute.

12

Structured approach vs OO Approach

13

Object Oriented Analysis and Design

© It is technical approach for analyzing and designing an

application/system by applying object-oriented programming.

© During analysis phase, you try to determine which objects you need

and how to organize them.

© During design phase, you take the analyzed objects and add

constraints to make them fit within the software and hardware that

you are developing for.

© But line between them is very thin and many easily tend to cross it.

14

Object Oriented Analysis

It is an iterative stage of analysis, which takes place during the

SDLC, that aims to model the functional requirements of the

software, while remaining completely independent of any

potential implementation requirements.

The source of OOA can be written requirements statements, A

formal Vision document, Interviews with stakeholders etc.

This will be typically presented as a set of use cases, one or more

UML class diagrams, interaction diagram etc.

Use case model:

© Use cases

© Activity Diagram

© Swimlane diagram & more

15

Object Oriented Analysis

OOA phase consists of five stages:

© Find and define the objects.

© Organize the objects by creating object model diagram.

© Describe how the objects interact with one another.

© Define the attributes of the objects.

© Define the behavior i.e. actions of the objects.

16

Object Oriented Design

OOD is the Implementation of the conceptual model produced

during OOA.

It is really just an extension of the OOA process except with the

consideration and implementation technological or environmental

of constraints (i.e. How?).

The constraints are:

© response time

© run-time platform

© development environment or programming language

© Time and budgetary limitations

© developer aptitude (ability), and so forth

17

Object Oriented Design

OOD Tasks:

© Physical DB design

© Design system architecture

© Design classes

Combining classes

Splitting classes

Eliminate classes

© Design components

© GUI design

OOD phases:

© Restructuring the class data (if necessary),

© Implementation of methods, i.e., internal data structures and algorithms,

© Implementation of control, and

© Implementation of associations and so on

If OOA is the what, then OOD is the how.

18

OOAD

OOAD Basic Terminologies

© Object, Attributes, Class, Methods, Message Passing, Encapsulation,

Abstraction, Inheritance.

© Already Discussed in previous slides

OOAD Modeling

© Models helps to visualize, specify, construct and document the artifacts of

software intensive system.

© OOAD modeling involves development of various diagrams that describes

the system under consideration.

© It helps to manage complexity, understand requirements and properly derive

the implementation.

19

OOAD

OOAD Modeling types Details on later slides

© Conceptual model

© Structural model

© Behavioral model

© Specification Model

© Implementation model

20

OOAD

Requirement Process:

© Requirement process is a systematic approach to find, document, organize

and track the needs of the users and response on changing requirements of a

system.

© Requirements are the aspects that the system must conform.

Requirement TypesAssignment

© Functional Requirement- What?

© Non-Functional Requirement- How?

© See S/W slides

Requirement Elicitation Methods Assignment

© Questionnaire

© Task Analysis

© Scenario

© Case study

21

Object Oriented

Development Cycle

22

Object Oriented Development Cycle

Object oriented systems development is a way to develop software

by building self – contained (independent) modules or objects that

can be easily replaced, modified and reused.

In an object–oriented environment, software or application is a

collection of discrete/separate objects that encapsulate their data as

well as the functionality.

It works by allocating tasks among the objects of the application.

The software development approach for object oriented modeling

goes through following stages:

© Analysis

© Design

© Implementation and Testing

23

Object Oriented Development Cycle

Transformation 1 (analysis):

© Translates the users’ needs into system requirements & responsibilities.

Transformation 2 (design):

© Begins with a problem statement and ends with a detailed design that can be

transformed into an operational system.

Transformation 3 (implementation)

© Refines the detailed design into the system deployment that will satisfy the

users’ needs.

© It represents embedding s/w product within its operational environment.

24

Rational Unified

Process

25

Rational Unified Process

The most successful approach for object oriented software

development is Rational Unified Process (RUP).

It is an approach that combines iterative and risk driven

development into a well documented process description.

26

RUP

Discipline Purpose

Business Modeling ©A business context (scope) of the project /product /software

showing how your system fits into its overall environment.

©outlining the scope /feasibility of the product

Requirements

Phase

© Gathering requirements

Design Phase ©System design and planning

Development

Phase

©Coding and unit testing;

System Testing ©Whole system testing and integration;

Deployment ©Deployment and release to production.

27

RUP Phases (Abstract)

Inception:

© The idea for the project is stated. The development team determines if the

project is worth pursuing and what resources will be needed.

Elaboration

© The project's architecture and required resources are further evaluated.

Developers consider possible applications of the software and costs

associated with the development.

Construction

© The project is developed and completed. The software is designed, written,

and tested.

Transition

© The software is released to the public. Final adjustments or updates are made

based on feedback from end users.

28

RUP Phases (description)

Inception

© The requirements are gathered.

© Feasibility study and scope of the project are determined.

© Actors and their interactions are analyzed.

Elaboration

© Project plan is developed.

© Risk assessment is performed.

© Non-functional requirements are elaborated.

© Software architecture is described.

© Use case model is completed.

29

RUP Phases

Construction

© All the components are developed and integrated.

© All features are tested.

© In each iteration, refactoring (clarifying and simplifying the design of

existing code, without changing its behavior) is done.

© Stable product should be released.

Transition

© Software product is launched to user.

© Deployment baseline should be complete.

© Final product should be released.

30

RUP Conclusion:

© Input to a process is the needs or requirements of the system.

© Process is the set of activities to reach goal.

© Output is the software product.

Agile Unified Process →Assignment

31

UML fundamental

and Notations

32

UML fundamental and Notations

© UML (Unified Modeling Language) is a standardized modeling language

consisting of an integrated set of diagrams, developed to help system and

software developers for specifying, visualizing, constructing, and

documenting the artifacts of software systems, as well as for business

modeling and other non-software systems.

© The UML represents a collection of best engineering practices that have

proven successful in the modeling of large and complex systems.

© The UML uses mostly graphical notations to express the design of software

projects.

© Using the UML helps project teams communicate, explore potential designs,

and validate the architectural design of the software.

Model Diagrams in UML

© The diagrams that are used to visualize the models of the system are called as

model diagrams.

© Constraint specifications help to explain the model diagrams and also

indicates its boundary.

33

Five Views

of UML

34

UML Views

User's view

© This contains the diagrams in which the user's part of interaction with the

software is defined.

© No internal working of the software is defined in this model.

© The diagrams contained in this view are:

Use case Diagram

Structural view

© In the structural view, only the structure of the model is explained.

© This gives an estimate of what the software consists of. However, internal

working is still not defined in this model.

© The diagram that this view includes are:

Class Diagrams

Object Diagrams

35

UML Views

Behavioral view

© The behavioral view contains the diagrams which explain the behavior of the

software.

© These diagrams are:

Sequence Diagram

Collaboration Diagram

State chart Diagram

Activity Diagram

Environmental view

© The environmental view contains the diagram which explains the after

deployment behavior of the software model.

© This diagram usually explains the user interactions and software effects on

the system.

© The diagrams that the environmental model contain are:

Deployment diagram

36

UML Views

Implementation view

© The implementation view consists of the diagrams which represent the

implementation part of the software.

© This view is related to the developer’s views.

© This is the only view in which the internal workflow of the software is

defined.

© The diagram that this view contains is as follows:

Component Diagram

37

UML

Notations

38

UML Notations

Dependency

© A dependency relationship indicates that changes to one model

element (independent model) can cause changes in another model.

© The change in independent thing will affect the dependent thing.

© Dependency is graphically represented as a dashed directed line.

© The arrow head points towards the independent thing.

39

UML Notations

Association:

© describe links between objects.

© It is presented as solid line connecting the participating classes, labeled and with

adornments (multiplicity and role name).

Various degree of association:

1. Unary

© Class A knows about class B.

© Class B knows nothing about Class A.

*Usually ‘knows about’means a pointer

or reference

Example:

A person knows its address

Address doesn’t know who is living there

40

UML Notations
2. Binary

© Class A knows about class B and vice-versa.

41

UML Notations

2. Binary

i. One to one

Example: Department and HOD have one to one associations.

ii. One to many

Example: department and students have one to many associations.

iii. Many to Many

Example: students and subjects have many to many relationship.

42

UML Notations

3. Ternary

43

Multiplicities Example

Format of multiplicity: <Lower_bound> .. <Upper_bound>

1 Exactly one, no more/ no less.

0..1 Zero or one

* many

0..* Zero or many

1..* one or many

© In association, each role has multiplicity, which shows the number

of objects that participate in an association.

© E.g.: 4 .. 8 means minimum of 4 and maximum of 8.

© The upper bound can be *, which means infinite upper bound. If

only single integer is shown then the range includes only that value

44

UML Notations

Aggregation

© Aggregation represents part-of relationship between a component object and an

aggregate object. Objects are assembled to create a new, more complex object.

© Aggregation is represented with a hollow diamond at the aggregate end.

45

UML Notations

Compositions:

© Aggregation implies a relationship where the child can exist independently of the

parent.

© E.g.: Class (parent) and Student (child). Delete the Class and the Students still

exist.

© Composition implies a relationship where the child cannot exist independent of

the parent. Example: House (parent) and Room (child). Rooms don't exist

separate to a House.

46

UML Notations

Generalization

© Generalization is a mechanism for combining similar classes of objects into a

single, more general class.

Specialization

© It is reverse process of Generalization means creating new sub classes from an

existing class.

47

UML Notations

Realization:

© It only inherits operations and cannot inherit attributes and association.

© It is represented by a hollow triangle shape on the interface end of

the dashed line. End corresponds to the realized element (the supplier).

Class Notations

© UML class is represented by the diagram shown above

© The top section is used to name the class.

© The second one is used to show the attributes of the class

© The third section is used to describe the operations performed by the class.

48

49

Symbols
©Plus:"+", indicates public visibility for an operation or attribute.

©Minus:"-", indicates private visibility for an operation or attribute.

©Hash:"#", indicates protected visibility for an operation or attribute.

©Colon:":", used to separate a name of a parameter or attribute or operation

from a class.

Object Notation:

© The object is represented in the same way

as the class.

© The only difference is the name which is

underlined as shown.

50

Actor Notation

© An actor can be defined as some internal or external entity

that interacts with the system.

© Actor is used in a use-case diagram to describe the internal or

external entities.

51

Use-Case Notation:

© Use-Case is represented as an eclipse with a name inside it. It

may contain additional responsibilities.

52

System Boundary

© It helps to identify what is an external vs. internal in use case.

© Represented as a rectangle.

53

Initial State Notation:

© Initial state is defined to show the start of a process. This

notation manly used in Activity diagram and State machine

diagram.

© The usage of Initial State Notation is to show the starting point

of a process

54

Final State Notation:

© Final state is used to show the end of a process. This notation

is mainly used in activity and State machine diagram to

describe the end.

© The usage of Final State Notation is to show the termination

point of a process.

55

Active class Notation:

© Active class looks similar to a class with a solid border.

© An Active Class indicates that, when instantiated, the Class controls its

own execution., it can operate standalone and define its own thread of

behavior.

© An active object runs on and controls its own thread of execution rather

than being invoked or activated by other objects

© Example: Clock

56

State machine Notation:

© State machine describes the different states of a component in

its life cycle.

57

Component Notation:

© A component is a logical unit block of the system, a slightly higher

abstraction than classes i.e. shows "white-box" view.

© A component in UML is shown as below with a name inside. Additional

elements can be added wherever required.

58

Node Notation:

© A node in UML is represented by a square box as shown below with a

name.

© It is a computational resource upon which system may be deployed for

execution. It may be

– A hardware device

– An execution environment represents software containers (such as OS, JVM,

servlet/EJB containers, application servers, portal servers etc.)

59

Behavioral Things

© Dynamic parts are one of the most important elements in

UML

© UML has a set of powerful features to represent the dynamic

part of software and non software systems

Sequential (Represented by sequence diagram)

Collaborative (Represented by collaboration diagram)

60

Grouping Things: Package Notation

© Package notation is shown below and this is used to group elements or

wrap the components of a system.

© Pretty much all UML elements can be grouped into packages. Thus,

classes, objects, use cases, components, nodes, node instances etc. can all

be organized as packages

61

Symbol

Example

Note Notation

© This notation is used to provide Additional information of a

system.

62

Interface Notation:

© An interface is a collection of operations i.e. Each interface

specifies a well-defined set of operations that have public

visibility.

© Interface is used to describe functionality without

implementation. Interface is just like a template where you

define different functions not the implementation.

63

Types of Relations in UML

Name Symbol Description

Dependency Changes in one model(independent) can cause

changes in another model (dependent)

Association

-Aggregation

-Composition

-describes link between objects.

-Part of relationship

-objects are assembled to create new and more

complex object.

-Same as aggregation only difference is that

child cannot exist independent of the parent.

Generalization

Specialization

-combining similar classes of objects into a

more general single class.

-creating new sub classes from an existing

class.

Realization -It only inherits operations and cannot inherit

attributes and association.
64

Types of Things in UML

Name Symbol Description

Class -An object with defined attributes and
operations.

Use case -A sequence of actions that a system performs
that yields an observable result

Actor -some internal or external entity that interacts
with the system

Initial state

Final state

-show the starting point of a process

-show the Ending point of a process

Note -A symbol to display comments.

65

Types of Things in UML

Name Symbol Description

State Machine - A behavior that specifies the sequences of

states an object or interaction goes through

during its' lifetime in response to events.

Node -A physical element existing at run time and

represents a resource.

-e.g.: A server

Components -A physical and replaceable part of a system

that implements a number of interfaces.

Example: a set of classes, interfaces, and

collaborations.

Interface -A collection of functions that specify a

service of a class or component, i.e. externally

visible behavior of that class.

66

Tribhuvan University

Institute of Engineering

Kathmandu Engineering College

Department of Electronics and Computer Engineering

by

Er. Santosh Giri

Lecturer, IOE, Pulchowk Campus

Chapter 2 & 3: Object Oriented Analysis & Design

20 Hrs, 35 Marks

Date: September 10, 2020
1

2

Case Studies from

chapter 1

3

Case One: The NextGen POS System

© A point-of-sale POS system is a computerized application used (in part) to record

sales and handle payments; it is typically used in a retail store. It includes

hardware components such as a computer and bar code scanner, and software to

run the system. It interfaces to various service applications, such as a third-party

tax calculator and inventory control. These systems must be relatively fault-

tolerant; that is, even if remote services are temporarily unavailable (such as the

inventory system), they must still be capable of capturing sales and handling at

least cash payments (so that the business is not crippled).

© A POS system increasingly must support multiple and varied client-side terminals

and interfaces. These include a thin-client Web browser terminal, a regular

personal computer with something like a Java Swing graphical user interface,

touch screen input, wireless PDA(Personal Digital Assistant) , and so forth.

4

More Cases:

The Monopoly Game System

Airlines Reservation system

See by yourself

5

Domain Modeling

6

Domain Modeling

© A domain model contains conceptual classes, associations between conceptual

classes, and attributes of a conceptual class.

© A domain model in UML is illustrated with a set of class diagrams omitting the

operations.

© The domain model also identifies the relationships among all the entities within

the scope of the problem domain, and commonly identifies their attributes.

© The model is shown as a class diagram.

7

Domain Modeling

Why?

© The domain model is created in order to represent key concepts of the problem

domain.

© The domain model can be effectively used to verify and validate the

understanding of the problem domain among various stakeholders.

© It is especially helpful as a communication tool and a focusing point both

amongst the different members of the business team as well as between the

technical and business teams.

How?

Using UML notation, a domain model is illustrated with a set of class diagrams in

which no operations are defined. It may show:

 domain objects or conceptual classes

 associations between conceptual classes

 Attributes.

8

Domain Modeling Guidelines

 List the candidate conceptual classes

How?

©Reuse or modify the existing model if one exists

©Use a category list

©Identify noun phrases in your use-cases

 Draw them in a domain model using UML

Add the associations necessary to record relationships.

Add the attributes necessary to fulfill the information requirements.

9

Domain Modeling Guidelines

On Naming and Modeling Things

© Use the vocabulary of the domain i.e. domain specific naming,

when naming conceptual classes and attributes.

 For example, if developing a model for a library, name the customer a

"Borrower" or "Patron"—the terms used by the library staff.

© A domain model may exclude conceptual classes in the problem

domain that are not relevant to the requirements.

 For example, we may exclude Pen and PaperBag from our domain

model (for the current set of requirements) since they do not have any

obvious noteworthy role.

10

Domain Modeling Guidelines

Common Mistake in Identifying Conceptual Classes

Perhaps the most common mistake when creating a domain model is to represent

something as an attribute when it should have been a concept.

Example:

© should store be an attribute of Sale, or a separate conceptual class Store?

The term suggests a legal entity, an organization, and something that occupies

space.

Therefore, Store should be a concept.

© As another example, consider the domain of airline reservations. Should

destination be an attribute of Flight, or a separate conceptual class

Airport?

In the real world, a destination airport is not considered attributes as it is a

massive thing that occupies space.

Therefore, Airport should be a concept.

11

Finding Conceptual Classes

Three Strategies to Find Conceptual Classes

1. Reuse or modify existing models.

© This is the first, best, and usually easiest approach.

© here we used published, well-crafted domain models and data models

(which can be modified into domain models) for many common domains,

such as inventory, finance, health, and so forth..

2. Use a category list.

3. Identify noun phrases.

Reusing existing models is excellent, but outside our scope.

12

Finding Conceptual Classes

Use a category list.

© We can kick-start the creation of a domain model by making a list of candidate

conceptual classes.

© Figure (in next slide represented as table) contains many common categories that

are usually worth considering, with an emphasis on business information system

needs.

© The guidelines also suggest some priorities in the analysis.

Examples are drawn from: see C. Larman‟s Book for details

© Next-Gen-POS (Point-of-Sale)

© Monopoly

© Airline Reservation domains.

13

Finding Conceptual Classes

Use a category list (Airlines RS)

14

Finding Conceptual Classes

Continue…

15

Finding Conceptual Classes

Continue…

16

Finding Conceptual Classes

Noun Phrase Identification(Method 3)

© Identify the nouns and noun phrases in textual descriptions of a domain, and

consider them as candidate conceptual classes or attributes.

© For example, the current scenario of the Process Sale use case can be used.

Main Success Scenario (or Basic Flow) for POS system:

© Customer arrives at a POS checkout with goods and/or services to

purchase.

© Cashier starts a new sale.

© Cashier enters product identifier.

© Customer select Item.

© System records sale line item and presents product description, price,

and running total. Price calculated from a set of price rules. Cashier

repeats steps 2-3 until it indicates done.

© System presents total with taxes calculated.

17

Finding Conceptual Classes

Continue

© Cashier tells Customer the total, and asks for payment.

© Customer pays and System handles payment.

© System logs the completed sale and sends sale and payment information to

the external Accounting “Ledger” (for accounting and commissions) and

Inventory “Register” systems (to update inventory).

© System presents receipt.

© Customer leaves with receipt and goods

18

Find and draw Conceptual Classes

Case Study: POS Domain

© From the category list and noun phrase analysis, a list is generated of candidate

conceptual classes for the domain.

Note: There is no correct list of conceptual classes

List of conceptual classes of initial POS domain model

Customer Cashier Sale Item

Ledger

Payment SalesLineItem

Product
Catalog

Register Store

Product
Description

19

Adding Associations and Attributes

Adding Associations

© An association is a relationship between classes that indicates some meaningful

and interesting relationship.

Association name:
 Use verb phrase
 Capitalize
 Avoid “has”, “use”

Multiplicity (Cardinality):

 „*‟ means “many”

 x..y means from x to y inclusively

Reading direction

20

Adding Associations and Attributes

Multiple Associations between two classes:

© Two classes may have multiple associations between them in a UML class

diagram; this is not uncommon.

© There is no outstanding example in the POS or Monopoly case study.

© but an example from the domain of the airline is the relationships between a

Flight and an Airport (see Figure); the flying-to and flying-from associations are

distinctly different relationships, which should be shown separately.

Flight Airport

* Flies-to 1

* Flies-from 1

21

POS with associations

22

Adding Associations and Attributes

Adding attributes

It is useful to identify those attributes of conceptual classes that are needed to

satisfy the information

When to Show Attributes?

Include attributes that the requirements (for example, use cases) suggest or imply

a need to remember information.

For example, in POS:

© A receipt (which reports the information of a sale) in the POS normally

includes a date and time

© The store includes name and address and

© The cashier includes ID, among many other things.

Therefore,

© Sale needs a dateTime attribute.

© Store needs a name and address.

© Cashier needs an ID.

23

Adding Associations and Attributes

Attributes Notations in UML

© The expression middleName : [0..1] indicates an optional value 0 or 1 are

present.

© For derived attributes we use the UML convention (a forward slash „/ ‟ symbol

before the attribute name)

24

Domain model for POS after adding attributes

25

UML

Use Case Diagram

26

UML Use Case Diagram

Use case is used to model the system or subsystem of an application.

A single use case diagram captures a particular functionality of a system.

The purpose of use case diagrams can be as follows:

© Used to gather requirements of a system

© Used to get an outside view of a system

© Identify external factors influencing the system

© Show the interaction among the requirements also called use cases.

To draw a use case diagram we should have following items identified or

components of use case diagrams are:

© Actor

© Use case

© System boundary

© Relationship

27

Use Case Diagram

Actor

© An actor is someone or something that must interact with the system under

development.

© An UML notation of Actor is represented as:

© Actors are not part of the system they represents anyone or anything that must

interact with the system.

© An single actor may perform more than one use cases (functionality)

28

Use Case Diagram

An actor may be:

© Input information to the system

© Receive information from the system

© Input to and out from the system.

How do we find the actors?

Ask the following questions:

© Who uses the system?

© Who install the system?

© Who starts up the system?

© What other system use this system?

© Who gets the information to the system?

Note: An actor is always external to the system.

29

Use Case Diagram

Categories of Actor:

© Principle

who uses the main system functions

© Secondary

who takes care of administration and maintenance

© External h/w

The h/w devices which are part of application domain and must be

used

© Other system

The other system with which the system must interact.

30

Use Case Diagram

Use cases:

© Use cases represents functionality of a system

© which are the specific roles played by the actors within and around the system

How do we find the use cases?

© What functions will the actor want from the system?

© Does the system store information? If yes then which actors will create, read,

update or delete that information?

© Does the system need to notify an actor about changes in its internal state?

31

Use Case Diagram

Generic format for documenting an use case

Pre condition: if any

Use case: name of the use case

Actors: list of actors, indicating who initiates the

use case

Purpose: intention of the use case.

Overview: Description.

Type: primary/secondary.

Post condition: if any

32

Use Case Diagram

Example:

Description of opening a new account in the bank

Use case Open new account

Actors Customer, Cashier, Manager

Purpose Like to have new saving account.

Description A customer arrives in the bank to open the new

account.

Customer requests for the new account form,

fill the form and submits, along with the

minimal deposit.

At the end of complete successful process

customer receives the passbook.

33

Use Case Diagram

System boundary:

© It helps to identify what is an external verse internal.

© External environment is represented only by actors.

© Represented as a rectangle.

34

UML Use Case Diagram

Relationship:

Relationship between use case and actor

© communicates

Relationship between two use cases

© Include

© extend

Notation used to show the include and extend relationship

«include»

«extend»

35

Use Case Diagram

«include» Relationship:

© A use cases may contain the functionality of another use case.

© It is used to show how the system can use a pre existing components

© An include relationship is a relationship in which one use case (the base use case)

includes or uses the functionality of another use case (the inclusion use case).

© Represented as a dashed line with an open arrow pointing from the base use case

to the inclusion use case. The keyword «include» is attached to the connector.

inclusion use casebase use case
«include»

36

Use Case Diagram

«include» relationship example:

© The following figure illustrates an restaurant order management system that

provides customers with the option of placing orders as well as tracking orders.

This behavior is modeled with two base use cases called PlaceOrder &

TrackOrder that has an inclusion use case called ValidateUser. The ValidateUser

use case is a separate inclusion use case because it contains behaviors that several

other use cases in the system use. That include relationship points from the

PlaceOrder & TrackOrder use cases to the ValidateUser use case indicate that,

the PlaceOrder & TrackOrder use cases always includes the behaviors of the

ValidateUser use case.

Validate

User

Place

Order

Track

Order

«include» «include»

37

UML Use Case Diagram

«extend» relationship

© Used to show optional behavior, which is required only under certain condition.

This is typically used in exceptional circumstances.

© Represented as dotted line labeled «extend» with an arrow toward the base case.

Example:

Here in following example the OrderPizza & Help

use cases are optional to base use case PlaceOrder.

inclusion use casebase use case
«extend»

Order pizza
Place

Order

«extend»

Help

38

Includes vs. Extend

Example:

Key Points:

include extend

Is this use case optional? No Yes

Is the base use case complete without this use case? No Yes

Is the execution of this use case conditional? No Yes

Does this use case change the behavior of the base use case? No Yes

Validate

User

Place

Order

«include»

Order pizza

39

Description: Withdraw money from ATM.

Use case Scenario name: Withdraw money from ATM.

Participating actors: Customer

ATM Machine

Bank

Preconditions: Network connection is active

ATM has available cash

Flow of events:

Bank customer inserts ATM card and enters PIN.

Customer is validated.

ATM displays actions available on ATM unit. Customer selects Withdraw Cash.

ATM prompts account.

Customer selects account.

ATM prompts amount.

Customer enters desired amount.

Information sent to Bank, inquiring if sufficient funds/allowable withdrawal limit.

Money is dispensed and receipt prints.

40

ATM Transaction Example

41

Library Management System

42

Example

A coffee vending machine dispenses coffee to customers. Customers order

coffee by selecting a recipe from a set of recipes. Customers pay using coins.

Change is given back if any to the customer. The service staff loads ingredients

into machine. The service staff can also add a recipe by indicating name of

coffee, units of coffee powder, milk, sugar, water and chocolate to be added as

well as the cost of coffee.

Actors:

Customer, Service staff

Use Cases:

Dispense coffee

Order

Pay coins

Payback

Load ingredients

Add recipe

43

Use Case Diagram Example

44

Restaurant order System (Class Work)

45

Restaurant order System (Class Work)

46

UML

System Sequence

Diagram

47

System Sequence Diagram

SSD is used to visualize a use case i.e. it shows interaction betweens system and

actors.

For a use case scenario, an SSD shows:

© The System (as a black box):

© The external actors that interact with System

© The System events that the actors generate.

SSD shows operations of the System in response to events, in temporal order

Develop SSDs for the main success scenario of a selected use case, then frequent

and salient alternative scenarios

:System

48

From Use case to SSD

How to construct an SSD from a use case:

Draw System as black box on right side

For each actor that directly operates on the System, draw a stick figure and a

lifeline.

For each System events that each actor generates in use case, draw a message.

Optionally, include use case text to left of diagram.

Example: use cases to SSD (Process Sale scenario) Larman, page 175

50

Description Process Sale

51

Analysis

To

Design

52

OOA to OOD

Fig: Transition from OOA to OOD

53

OOA to OOD

Input (sources) for object-oriented design

The input for object-oriented design is provided by the output of object-oriented

analysis. Realize that an output artifact does not need to be completely developed

to serve as input of object-oriented design. Analysis and design may occur in

parallel, and in practice the results of one activity can feed the other in a short

feedback cycle through an iterative process. Both analysis and design can be

performed incrementally, and the artifacts can be continuously grown instead of

completely developed in one shot.

Some typical input artifacts for object-oriented design are:

 Conceptual model

Conceptual model is the result of object-oriented analysis, it captures concepts in

the problem domain. The conceptual model is explicitly chosen to be independent

of implementation details, such as concurrency or data storage.

54

OOA to OOD

 Use case

© Use case is a description of sequences of events that, taken together, lead to a

system doing something useful. Each use case provides one or more

scenarios that convey how the system should interact with the users called

actors to achieve a specific business goal or function.

© Use case actors may be end users or other systems. In many circumstances

use cases are further elaborated into use case diagrams. Use case diagrams

are used to identify the actor (users or other systems) and the processes they

perform.

 System Sequence Diagram

© System Sequence diagram (SSD) is a picture that shows interaction between

actors and system (as a abstract), for a particular scenario of a use case, the

events that external actors generate, their order, and possible inter-system

events.

55

OOA to OOD

 User interface documentations (if applicable)

© Document that shows and describes the look and feel of the end product's

user interface. It is not mandatory to have this, but it helps to visualize the

end-product and therefore helps the designer.

 Relational data model (if applicable)

© A data model is an abstract model that describes how data is represented and

used. If an object database is not used, the relational data model should

usually be created before the design, since the strategy chosen for object-

relational mapping is an output of the OO design process. However, it is

possible to develop the relational data model and the object-oriented design

artifacts in parallel, and the growth of an artifact can stimulate the refinement

of other artifacts.

56

OOA to OOD

Output (deliverables) of object-oriented design

Some typical deliverables artifacts for object-oriented design are:

 Interaction diagram (Sequence Diagrams/Collaboration)

© Extend the System Sequence Diagram to add specific objects that handle the

system events. A sequence diagram shows, as parallel vertical lines, different

processes or objects that live simultaneously, and, as horizontal arrows, the

messages exchanged between them, in the order in which they occur.

 Design Class diagram

© A class diagram is a type of static structure UML diagram that describes the

structure of a system by showing the system's classes, their attributes, and the

relationships between the classes. The messages and classes identified

through the development of the sequence diagrams can serve as input to the

automatic generation of the global class diagram of the system.

57

UML

Sequence Diagram

58

Sequence Diagram

 Sequence diagram is interaction diagram that shows message exchanged or

interaction between objects in the system.

 It mainly emphases on time ordering of messages between objects.

 It is used to illustrate the dynamic view of the system

Object or participants:

 The sequence diagram is made up of collection of participants or objects.

Participants are system parts that interact each other during sequence

diagram.

 The participants interact with each other by sending and receiving message.

 The object is represented by as:

59

Sequence Diagram

Lifeline:

 Lifeline represents the existence of an object over a period of time.

 It is represented by vertical dashed line

Most objects that appeared in „Interaction diagram‟ will be in existence for

the duration of an interaction. So, these objects are aligned at top of diagram

with their lifeline from top to bottom of diagram.

60

Sequence Diagram

Activation bar:

 It is represented by tall thin rectangle.

 The top of rectangle is aligned with start of the action.

 The bottom is aligned with its completion and can be marked by a written

message

 It is also called as focus of control. It shows the period of time during which

an object is performing an action or operation.

61

Sequence Diagram

Messages:

Messages can be flow in whatever direction required for interaction from left

to right and right to left.

 The messages on sequence diagram are specifies using an arrow from

participant that wants to pass the messages to the participant that receive the

messages.

 The interaction in a sequence diagram between the objects can be shown by

using messages.

Message types:

1) Asynchronous messages:-

 It is a message where the sender is not blocked and can continue executing.

 Representing by solid line with open arrowhead.

Asynchronous message

62

Sequence Diagram

2) Synchronous messages

 It is a message where the sender is blocked and waits until the receiver has

finished processing of message.

 It is invoked the caller waits for the receiver to return from the message

invocation.

 It is represented by solid line with filled arrowhead.

Synchronous message

63

Sequence Diagram

3) Reflexive messages/self message:-

 If the object sends the message to itself then it is called as „Reflexive

message‟.

 It is represented by solid line with loops the lifeline of object.

4) Return messages:-

 It can be used at the end of activation bar to show that control flow of

activation returns to the participant that pass the original message.

 It is represented by dashed line from sender to receiver.

Return message

64

Sequence Diagram

5) Create messages:

 It is used to create object during interaction.

 The object can be created by using <<create>> to indicate the timing of

creation.

 Creating message can be shown as below:

65

Sequence Diagram

6) Destroy messages:

 It is used to destroy the objects during interaction.

 The objects can be terminated using <<destroy>> which points to an “x”.

 It indicates that object named message is terminated.

Note: Avoid modeling object destruction unless memory management is critical.

66

Sequence Diagram

Time:

 Time is all about ordering but not duration.

 So time in an important factor.

 The time on sequence diagram starts at top of the page just below the object and

then progress down the page.

 The sequence diagram describes the order in which interaction takes place.

67

Sequence Diagram

Event:

 Event is created while sending and receiving message.

 When interaction takes place, Events are called as build in blocks for messages

and signals.

 It can be referred as smallest part of an interaction and event can occur of at any

given point in a Time.

68

Sequence Diagram: Control Information

Condition

 syntax: [expression or condition] message-label

 The message is sent only if the condition is true

 example: [user valid= “true”] give access

Iteration

 syntax: * [expression] message-label or *message-label

Note: * [expression] message-label is not standard syntax

 The message is sent many times to possibly multiple receiver objects.

69

Sequence Diagram

 The control mechanisms of sequence diagrams suffice only for modeling simple

alternatives.

 Consider drawing several diagrams for modeling complex scenarios.

 Don‟t use sequence diagrams for detailed modeling of algorithms (this is better

done using activity diagrams, pseudo-code or state-charts).

70

Order processing  POS

condition

message

iteration

71

Borrowing book from library

Sequence Diagrams

member:

LibraryMember
book:Book

:Book

Copy

borrow(book)

ok = mayBorrow()

[ok] borrow(member)
setTaken(member)

72

Borrowing book from library

Sequence Diagrams

member:

LibraryMember
book:Book

:Book

Copy

borrow(book)

ok = mayBorrow()

[ok] borrow(member)
setTaken(member)

X-Axis (objects)

Y
-A

x
is (tim

e)

Object
Life

Line
message

Activation

box

condition

73

ATM (Invalid Pin)

Login

75

Online shopping: Explanation [Assignment]

76

UML

Collaboration/

Commn Diagram

77

Collaboration (Communication) Diagrams

 Collaboration diagrams (also called Communication diagrams) show a particular

sequence of messages exchanged between a number of objects

 This is what sequence diagrams do too!

 Sequence diagram highlight more the temporal aspect of the system i.e. it shows

object interaction in timely manner(so no need of numbering the messages).

 In Collaboration diagram, the temporal aspect can be shown here too, by

numbering the interactions with sequential labels. (so need to numbering the

messages).

 So Sequence numbers are used to show the time ordering among the messages.

78

Collaboration (Communication) Diagrams

79

UML

Activity Diagram

80

Activity Diagram
 An activity diagram visually represents a series of actions or flow of control in a

system similar to a flowchart.

 Activities modeled can be sequential and concurrent.

 In both cases an activity diagram will have a beginning (an initial state) and an

end (a final state) and in between them series of actions to be performed by the

system.

Symbols in Activity Diagram

Initial State or Start Point

 A small filled circle followed by an arrow represents the initial action state or the

start point for any activity diagram.

81

Symbols in Activity Diagram

Activity or Action State

 An activity represents execution of an action or performing some operation.

 It is represented using a rectangle with rounded corners.

Action Flow

 Action flows, also called edges and paths, illustrate the transitions from one

action state to another.

 They are usually drawn with an arrowed line.

Activity

82

Symbols in Activity Diagram

Object Flow

 Object flow refers to the creation and modification of objects by activities.

 An object flow arrow from an action to an object means that the action creates or

influences the object.

 An object flow arrow from an object to an action indicates that the action state

uses the object.

Activity

Class/Object

83

Symbols in Activity Diagram

Decisions and Branching

 A diamond represents a decision with alternate paths.

 When an activity requires a decision prior to moving on to the next activity, add a

diamond between the two activities.

 The outgoing alternates should be labeled with a condition or guard expression.

You can also label one of the paths "else."

84

Symbols in Activity Diagram

Synchronization

 A fork node is used to split a single incoming flow into multiple concurrent

flows. It is represented as a straight, slightly thicker line in an activity diagram.

 A join node joins multiple concurrent flows back into a single outgoing flow.

 A fork and join mode used together are often referred to as synchronization.

Fork

Join

85

Symbols in Activity Diagram

Fork

 A fork node is used to split a single incoming flow into multiple concurrent

flows.

 It is represented as a straight, slightly thicker line in an activity diagram.

86

Symbols in Activity Diagram

Join

 A join node joins multiple concurrent flows back into a single outgoing flow.

87

Symbols in Activity Diagram

Time Event

 This refers to an event that stops the flow for some amount of time.

 It is represented by a hourglass.

88

Symbols in Activity Diagram

Final State or End Point

 An arrow pointing to a filled circle nested inside another circle represents the

final action state.

89

Fig: Activity diagram of

borrowing a book from library

90Fig: Swimlane diagram of ATM transaction

91

Activity Diagram

Process Order - Problem Description (Class Work)

 Once the order is received, the activities split into two parallel sets of activities.

One side fills and sends the order while the other handles the billing.

 On the Fill Order side, the method of delivery is decided conditionally.

Depending on the condition either the Overnight Delivery activity or the Regular

Delivery activity is performed.

 Finally the parallel activities combine to close the order.

92

93

Activity Diagram

Activity Diagram Example - Student Enrollment (CW)

 An applicant wants to enroll in the university.

 The applicant hands a filled out copy of Enrollment Form.

 The registrar inspects the forms.

 The registrar determines that the forms have been filled out properly.

 The registrar informs student to attend in university overview presentation.

 The registrar helps the student to enroll in seminars

 The registrar asks the student to pay for the initial tuition.

94

95

UML

State Machine

Diagram

96

State Machine Diagram

 An object responds differently to the same event depending on what state it

is in.

 A state machine diagram models the behavior of a single object, specifying the

sequence of events that an object goes through during its lifetime in response to

events.

 State diagrams are used to show possible states a single object can get into

 i.e. shows states of an object .

 How object changes state in response to events

 shows transitions between states

97

State Machine Diagram

States

 A state is denoted by a round-cornered rectangle with the name of the state

written inside it.

Initial and Final States

 The initial state is denoted by a filled black circle and may be labeled with a

name. The final state is denoted by a circle with a dot inside and may also be

labeled with a name.

Initial state

Final state

98

State Machine Diagram

Transitions

 Transitions from one state to the next are denoted by lines with arrowheads. A

transition may have a trigger, a guard and an effect, as below.

 "Trigger" is the cause of the transition, which could be a signal, an event, a

change in some condition, or the passage of time. "Guard" is a condition which

must be true in order for the trigger to cause the transition. "Effect" is an action

which will be invoked directly on the object that owns the state machine as a

result of the transition.

99

State Machine Diagram

State Actions

 For each transition, an effect was associated with the transition.

Entry

Exit

Do

Defer

100

State Machine Diagram

Self-Transitions

 A state can have a transition that returns to itself, as in the following diagram

101

State Machine Diagram
Compound States or Sub States

 A state machine diagram may include sub-machine diagrams, as in the example:

102

State Machine Diagram
 The alternative way to show the same information is as follows.

 The notation in above fig. indicates that the details of the Check PIN sub-

machine are shown in a separate diagram.

103

State Machine Diagram
Terminate Pseudo-State

 Entering a terminate pseudo-state indicates that the lifeline of the state machine

has ended.

 A terminate pseudo-state is notated as a cross.

104

State Machine Diagram
History States

 A history state is used to remember the previous state of a state machine when it

was interrupted.

 The above diagram illustrates the use of history states. The example is a state

machine belonging to a washing machine.

105

State Machine Diagram
History States

 In this state machine shown in previous slide, when a washing machine is

running, it will progress from "Washing" through "Rinsing" to "Spinning".

 If there is a power cut, the washing machine will stop running and will go to the

"Power Off" state. Then when the power is restored, the Running state is entered

at the "History State" symbol meaning that it should resume where it last left-

off.

106

State Machine Diagram
Concurrent state machine

 A state may be divided into regions containing sub-states that exist and execute

concurrently. The example below shows that within the state "Applying Brakes",

the front and rear brakes will be operating simultaneously and independently.

Notice the use of fork and join pseudo-states, rather than choice and merge

pseudo-states. These symbols are used to synchronize the concurrent threads.

107

SMD of Recruitment process

108

State Machine Diagram
 Sub states or compounded states example

 Class work (description) ->Even roll -> Too Hot

->Odd roll -> Too Cool

109

Designing objects/

Object models

110

Designing Objects

Object Models:

There are two kinds of object models:

 Dynamic models, such as UML interaction diagrams sequence diagrams or

communication diagrams), help design the logic, the behavior of the code or the

method bodies. They tend to be the more interesting, difficult, important

diagrams to create.

 Static models, such as UML class diagrams, help design the definition of

packages, class names, attributes, and method signatures (but not method bodies).

111

Designing Objects
How do developers design objects?

Here are three ways:

1. Code:

Design-while-coding (Java, C#, …), ideally with power tools such as refactoring.

2. Draw, then code:

Drawing some UML on a whiteboard or UML CASE tool, then switching to #1

with a text-strong IDE (e.g., Eclipse or Visual Studio).

3. Only draw:

Somehow, the tool generates everything from diagrams. Many a dead tool vendor

has washed onto the shores of this steep island. "Only draw" is a misnomer, as

this still involves a text programming language attached to UML graphic

elements.

112

Object Design

Techniques

113

Realization of Use case
 A use-case realization represents how a use case will be implemented in terms of

collaborating objects. This artifact can take various forms. It can include, for

example, a textual description (a document), class diagrams of participating

classes and subsystems, and interaction diagrams (communication and sequence

diagrams) that illustrate the flow of interactions between class and subsystem

instances.

 The reason for separating the use-case realization from its use case is that doing

so allows the use cases to be managed separately from their realizations. This is

particularly important for larger projects or families of systems where the same

use cases can be designed differently in different products within the product

family. Consider the case of a family of telephone switches which have many use

cases in common, but which design and implement them differently according to

product positioning, performance and price.

 For larger projects, separating the use case and its realization allows changes to

the design of the use case without affecting the baseline use case itself.

 In a model, a use-case realization is represented as a UML collaboration that

groups the diagrams and other information (such as textual descriptions) that

form part of the use-case realization.

114

Realization of Use case
 UML diagrams that support use-case realizations can be produced in an analysis

context, a design context, or both, depending on the needs of the project. For each

use case in the use-case model, there can be a use-case realization in the

analysis/design model with a realization relationship to the use case. In UML this

is shown as a dashed arrow, with an arrowhead like a generalization relationship,

indicating that a realization is a kind of inheritance, as well as a dependency.

Use case realization :

 Make sure that the sequence diagrams realize (show) the behavior outlined in the

use cases and assign behavior to classes in the class diagram. Together, these

three continue to evolve and sharpen each other. This can be shown as following

figure:

Fig: Use case realization process

115

Class Diagrams Owned by a Use-Case Realization
 For each use-case realization there can be one or more class diagrams depicting its participating

classes. A class and its objects often participate in several use-case realizations. It is important while

designing to coordinate all the requirements on a class and its objects that different use-case

realizations can have.

 The figure below shows an analysis class diagram for the realization of the Withdraw Cash Item

use case.

Fig: Use case realization of Cash Withdraw Use case

116

Use case realization  Comnn & Sequence Diagrams
 For each use-case realization there can be one or more interaction diagrams depicting its participating

objects and their interactions. There are two types of interaction diagrams: sequence diagrams and

communication diagrams. They express similar information, but show it in different ways. Sequence

diagrams show the explicit sequence of messages and are better when it is important to visualize the

time ordering of messages, whereas communication diagrams show the communication links between

objects and are better for understanding all of the effects on a given object and for algorithm design.

Example, the simple use case for a automobile navigation system below.

GPS Navigate to Address Use Case

1. Driver starts navigational system

 System prompts for whether the driver needs help finding an address, intersection, or point of

interest

2. Driver selects address

 System prompts for address (street, city)

3. Driver provides address info

 System computes location of address

 System computes car's current location

 System computes route from current location to address location

 System locates digital map based on address location

 System displays appropriate digital map with route information

117

Fig: Realizing Use Cases Automobile navigation System through sequence diagram

118

CRC Cards

 A Class Responsibility Collaborator (CRC) model is a collection of standard

index cards that have been divided into three sections:

 A class Name

Name of a class.

 A responsibility

It is something that a class knows or does.

 A collaborator

It is another class that a class interacts with to fulfill its responsibilities.

 Although not formally part of the UML, It is used to help assign responsibilities

and indicate collaboration with other objects\class.

 The main motive of this model is encouraging objects designers to think more

abstractly in terms of responsibility assignment and collaborations.

 CRC models are an incredibly effective tool for conceptual modeling.

119

CRC Cards

 CRC Layout:

 CRC Example:

Customer  Class Name

Places orders

Knows name

Knows address

Knows order history

“Responsibilities”

Order  Collaborating

Class

Class Name

Responsibilities Collaboration

120

CRC Cards

Class:

 A class represents a collection of similar objects. An object is a person, place,

thing, event, or concept that is relevant to the system at hand.

 For example, in a University Management System, classes would represent

students, professors, and seminars etc.

 The name of the class appears across the top of a CRC card and is typically a

singular noun or singular noun phrase, such as Student, Professor, and Seminar.

 The information about a student describes a single person, not a group of people.

Therefore, we use the name Student and not Students.

 Class names should also be simple and domain specific. For example, which

name is better: Student or Person who takes seminars? [i.e. Domain specific

naming as we already discussed in Domain modeling]

121

CRC Cards

Responsibility:

 A responsibility is anything that a class knows or does.

 For example, students have names, addresses, and phone number etc. These are

the things a student knows.

 Students also enroll in seminars, drop seminars, and request transcripts. These are

the things a student does.

 So we can conclude that, the things a class knows and does constitute its

responsibilities.

122

CRC Cards

Collaborations:

 Sometimes a class has a responsibility to fulfill, but does‟t have enough

information to do it.

 For example, as we know students enroll in seminars. To do this, a student needs

to know if a spot is available in the seminar and, if so, then he needs to be added

to the seminar.

 However, students only have information about themselves (their names and so

forth), and not about seminars.

 What the student needs to do is collaborate/interact with the card

labeled Seminar to sign up for a seminar. Therefore, Seminar is included in the

list of collaborators of Student.

Collaboration takes one of two forms:

 A request for information

 a request to do something.

 A request for information: Student requests an indication from the

card Seminar whether a space is available.

 A request to do something: Student requests to be added to the Seminar.

123

CRC Cards Example

CRC card for Student:

Student  Class Name

Student number

Name

Address

Phone Number

Enroll in a seminar

Drop a seminar

Request transcripts

“Responsibilities”

Seminar  Collaborating

Class

124

CRC Cards

Steps to create CRC cards

 Find classes:

 A good rule of thumb is that you should look for the three-to-five main

classes right away, such as Student, Seminar, and Professor etc (in case of

university management system).

 Sometimes you can include UI classes such as Transcript and Student

Schedule etc.

 Find responsibilities.

To find responsibilities of a class, we must find out:

 what a class does.

 what information you wish to maintain about it.

125

CRC Cards

 Define collaborators

 A class often does not have sufficient information to fulfill its responsibilities.

Therefore, it must collaborate with other classes to get the job done.

 Collaboration will be in one of two forms: a request for information or a

request to perform a task.

 To identify the collaborators of a class for each responsibility we must ask a

question "does the class have the ability to fulfill this responsibility?". If not

then look for a class that either has the ability to fulfill the missing

functionality or the class which should fulfill it.

126

CRC Cards Example UMS

Student

Name

SID

Address

Phone number

Email Address

Average mark received

List of seminars taken

Seminar

Professor

Name

PID

Address

Phone number

Email Address

Salary

List of seminars instructing

Seminar

Seminar

Name

Seminar Number

Fees

Waiting list

Enrolled students

Instructor

Add students

Drop students

Student

Professor

127

Design Class

Diagram

128

Design Class Diagram
Class Diagrams

 The UML includes class diagrams to illustrate classes, interfaces, and their associations. They are

used for static object modeling. A class diagram describes the static structure of a system. It shows

how a system is structured rather than how it behaves. The static structure of a system comprises of a

number of class diagrams and their dependencies. The main constituents of a class diagram are

classes and their relationships: generalization, aggregation, association, and various kinds of

dependencies.

Design Class Diagram(DCD)

 In a conceptual perspective the class diagram can be used to visualize a domain model. For

discussion, we also need a unique term to clarify when the class diagram is used in a software or

design perspective. A common modeling term for this purpose is design class diagram (DCD).

Fig: Different Perspectives in Class Diagram

129

DCD

UML Class Diagram

 A class diagram is a type of static structure diagram that describes the structure

of a system by showing the system's classes, their attributes, operations (or

methods), and the relationships among objects.

A UML class diagram is made up of:

 A set of classes

 A set of relationships between classes

What is a Class

 A description of a group of objects all with similar roles in the system.

 which consists of:

 Structural features i.e. attributes

 Behavioral features i.e. operations

130

DCD

Class Notations:

 The graphical representation of the class: Bank Account as shown above:

 Bank Account has 3 attributes and 4 operations.

 All 3 parameters/ attributes are of type string

131

DCD

A class notation consists of three parts:

Class Name

 The name of the class appears in the first partition.

Class Attributes

 Attributes are shown in the second partition.

 The attribute type is shown after the colon.

 Attributes map onto member variables (data members) in code.

Class Operations or Methods:

 Operations are shown in the third partition. They are services the class

provides.

 The return type of a method is shown after the colon at the end of the method

signature.

 The return type of method parameters are shown after the colon following the

parameter name.

 Operations map onto class methods in code

132

Relationship Types in DCD

Inheritance (or Generalization):

 Represents an "is-a" relationship.

 A solid line with a hollow arrowhead that point from the child to the parent class.

 SubClass1 and SubClass2 are Child class and Super Class is parent class.

133

Relationship Types in Class Diagram

Inheritance example:

134

Relationship Types in Class Diagram

Aggregation:

 It represents a "part of" relationship.

 Class2 is part of Class1.

 A solid line with a unfilled diamond at the association end connected to the class

of composite.

 Many instances (denoted by the *) of Class Blood cell can be associated with

Class Cell.

 Objects of Class Blood cell and Class Cell have separate lifetimes.

135

Relationship Types in Class Diagram

Aggregation example:

136

Relationship Types in Class Diagram

Composition:

 A special type of aggregation where parts are destroyed when the whole is

destroyed.

 Objects of Class Brain live and die with Class Person.

 Class Brain cannot stand by itself.

 A solid line with a filled diamond at the association connected to the class of

composite

137

Relationship Types in Class Diagram

Dependency:

 Exists between two classes if changes to the definition of one may cause changes

to the other (but not the other way around).

 Class film clip depends on class channel.

 A dashed line with an open arrow

138

Relationship Types in Class Diagram

Relationship Name:

 Names of relationships are written in the middle of the association line.

 Good relation names make sense when you read them out loud:

 "Every spreadsheet contains some number of cells",

 "an expression evaluates to a value"

 They often have a small arrowhead to show the direction in which direction to

read the relationship, e.g., expressions evaluate to values, but values do not

evaluate to expressions.

139

Relationship Types in Class Diagram

Visibility of Class attributes and Operations

 See Class Diagram in UML Notations

 In object-oriented design, there is a notation of visibility for attributes and

operations.

 UML identifies four types of visibility:

 public, protected, private, and package.

 The +, -, # and ~ symbols before an attribute and operation name in a class

denote the visibility of the attribute and operation.

+ denotes public attributes or operations

- denotes private attributes or operations

denotes protected attributes or operations

~ denotes package attributes or operations

140

Relationship Types in Class Diagram

Multiplicity

 How many objects of each class take part in the relationships and multiplicity can

be expressed as:

 1- Exactly one.

 0..1- Zero or one.

 0..* or * - Many.

 1..* - One or more.

 3..4 or 6- Exact Number { minimum 3 maximum 4 or exactly 6}

 complex relationship - e.g. 0..1, 3..4, 6..* would mean any number of objects

other than 2 or 5

141

Relationship Types in Class Diagram

Multiplicity:

A Student can take many Courses and many Students can be enrolled in one Course.

142

Class diagram: ATM Machine

143

Description: Assignment

144

Design Class Diagram

Description:

 Shape is an abstract class. It is shown in Italics.

 Shape is a superclass. Circle, Rectangle and Polygon are derived from Shape. In

other words, a Circle is-a Shape. This is a generalization / inheritance

relationship.

 There is an association between DialogBox and DataController.

 Shape is part-of Window. This is an aggregation relationship. Shape can exist

without Window.

 Point is part-of Circle. This is a composition relationship. Point cannot exist

without a Circle.

 Window is dependent on Event. However, Event is not dependent on Window.

 The attributes of Circle are radius and center. This is an entity class.

 The method names of Circle are area(), circum(), setCenter() and setRadius().

 The parameter radius in Circle is an in parameter of type float.

 The method area() of class Circle returns a value of type double.

 The attributes and method names of Rectangle are hidden. Some other classes in

the diagram also have their attributes and method names hidden.

145

Object Diagram

146

Object Diagram

 Object is an instance of a class i.e. instance of a particular moment in runtime.

 A static UML object diagram is an instance of a class diagram.

 It shows a snapshot of the detailed state of a system at a point in time, thus an

object diagram encompasses objects and their relationships at a point in time.

 The use of object diagrams is fairly limited, mainly to show examples of data

structures.

 The best way to illustrate what an object diagram look like is to show the object

diagram derived from the corresponding class diagram.

147

Object Diagram Notations

Object Names:

 Every object is actually symbolized like a rectangle, that offers the name from

the object and its class underlined as well as divided with a colon.

Object Attributes:

 Similar to classes, you are able to list object attributes inside a separate

compartment. However, unlike classes, object attributes should have values

assigned for them.

148

Object Diagram Notations

Links:

 Links tend to be instances associated with associations. You can draw a link

while using the lines utilized in class diagrams.

149

Class Diagram example

Class to Object

150

Class Diagram: Order Management System

151

Object Diagram: Order Management System

152

Object Diagram: POS

153

Object Diagram: Company Structure

154

Design Pattern

155

Design Patterns

 In software development, a pattern (or design pattern) is a written document

that describes a general solution to a design problem that recurs repeatedly

in many projects.

 Or a pattern is a named description of a problem & its solution that can be

applied to new contexts.

 Software designers adapt the pattern solution to their specific project.

 A design pattern isn't a finished design that can be transformed directly into code.

It is a description or template for how to solve a repeated problems.

156

Design Patterns

Pattern elements

There are four essential elements of the design patterns:

 Name

 A name that is a meaningful reference to the pattern

 Problem description

 Description of the problem.

 Solution description

 Not a concrete design but a template for a design solution that can be

implemented in different ways.

 Consequences

 The results and trade-offs of applying the pattern

 Helps the designer to understand whether a pattern can be effectively applied

in particular situation

157

Design Patterns

Two graphical representations of same data.

158

Design Patterns

Assignment

Design Patterns and Its uses in OOAD

159

GRASP

GRASP (General Responsibility Assignment Software Principles) :

 GRASP helps us in deciding which responsibility should be assigned to

which object/class i.e. it helps to guide object oriented design by clearly

outlining who does what.

 Which object or class is responsible for what actions.

 Helps us to define how classes work with one another.

 9 GRASP Patterns:

Creator

Information Expert

Low Coupling

Controller

High Cohesion

Polymorphism

Indirection

Protected Variations

Pure Fabrication

160

GRASP

Creator

 Who creates an Object? Or who should create a new instance of some class?

 “Container” object creates “contained” objects.

 Decide who can be creator based on the objects association and their interaction.

Name: Creator

Problem: Who creates A?

Solution: Assign class B the responsibility to create an instance

of class A if one of these is true:

B "contains" or compositely aggregates A.

B records A.

B closely uses A.

B has the initializing data for A that will be passed to A when it

is created.

161

GRASP

Example:

Consider Video Store and Video in that store.

 Video Store has an Composite association with Video. i.e, Video Store is the

container and the Video is the contained object or Video is part of VideoStore.

 So, we can instantiate video object in Video Store class

162

GRASP

Information Expert:

 Given an object A, which responsibilities can be assigned to A?

 Expert principle says – assign those responsibilities to A for which A has the

information to fulfill that responsibility.

 They have all the information needed to perform operations, or in some cases

they collaborate with others to fulfill their responsibilities.

Name: Information Expert

Problem: What is a general principle of assigning responsibilities

to objects A?

Solution: Assign those responsibilities to A for which A has the

information needed to fulfill it.

163

GRASP

Information expert Example:

 Assume we need to get all the videos of a Video Store.

 Since Video Store knows about all the videos, we can assign this responsibility of

giving all the videos to Video Store class.

 So Video Store is the information expert.

164

GRASP

Low Coupling:

 How strongly the objects are connected to each other?

 Coupling – one object depending on other object.

 Low Coupling – How can we reduce the impact of change.

 Prefer low coupling – assign responsibilities so that coupling remain low.

 Minimizes the dependency hence making system maintainable and efficient

Name: Low Coupling

Problem: How to reduce the impact of change?

Solution: Assign a responsibility so that coupling remains low.

165

GRASP

Low coupling

Two elements are coupled, if

 One element has aggregation/composition association with another

element.

 One element implements/extends other element.

Example of poor coupling

Here class Rent knows about both Video Store and Video objects. Rent is

depending on both classes.

166

GRASP

Low coupling

 Video Store and Video class are coupled, and Rent is coupled with Video Store.

Thus providing low coupling.

167

GRASP

Controller:

 A controller is the first object beyond the UI layer that is responsible for

receiving or handling a system operation message.

 Deals with who should be responsible for handling event from external

actors(UI).

Name: Controller

Problem: What first object beyond the UI layer receives and

coordinates ("controls") a system operation?

Solution: Assign the responsibility to a class representing one of

the following choices:

Represents the overall "system.

a root object

a device that the software is running within

a major sub system.

168

GRASP

Controller example:

169

GRASP

High cohesion

 Cohesion is the indication of the relationship within a module. Where as

Coupling is the indication of the relationships between modules.

 We prefer high cohesion.

170

GRASP

High cohesion

Name: High Cohesion

Problem: How to keep objects focused, understandable, and

manageable, and as a side effect, support Low

Coupling?

Solution: Assign a responsibility so that cohesion remains high.

171

GRASP

Low cohesion example:

172

GRASP

High cohesion example:

173

GRASP

Polymorphism

 How to handle related but varying elements based on element type?

 Polymorphism guides us in deciding which object is responsible for handling

those varying elements.

 Benefits: handling new variations will become easy.

174

GRASP

Example for Polymorphism

 the getArea() varies by the type of shape, so we assign that responsibility to the

subclasses.

 By sending message to the Shape object, a call will be made to the corresponding

sub class object – Circle or Triangle.

175

GRASP

Indirection

Protected Variations

Pure Fabrication

See by yourself

 (Reference: Applying UML and Patterns, Craig Larman)

185

Mapping Design to

Code

186

Mapping Design to Code

Implementations of an object oriented language requires writing source code for:

 Class and interface definitions

 Method definitions

Creating Class Definitions from DCD (Design Class Diagram):

 At the very least, DCDs depict the class or interface name, super classes,

operation signatures, and attributes of a class. This is sufficient to create a basic

class definition in an OO language.

 If the DCD was drawn in a UML tool, it can generate the basic class definition

from the diagrams.

Defining a Class with Method Signatures and Attributes

 From the DCD, a mapping to the attribute definitions (Java fields) and method

signatures for the Java definition of SalesLineItem is straightforward, as shown in

Figure (next page).

187

Mapping Design to Code

Fig: SalesLineItem in Java

Note:

The addition in the source code of the Java constructor SalesLineItem(…). It is derived

from the create(desc, qty) message sent to a SalesLineItem in the enterItem interaction

diagram. This indicates, in Java, that a constructor supporting these parameters is required.

The create method is often excluded from the class diagram because of its commonality and

multiple interpretations, depending on the target language

Fig: Constructor from interaction

diagram

AA
Highlight

AA
Highlight

AA
Highlight

AA
Highlight

188

Mapping Design to Code

Creating Methods from Interaction Diagrams:

 The sequence of the messages in an interaction diagram translates to a series of

statements in the method definitions. The enterItem interaction diagram in Figure

below illustrates the Java definition of the enterItem method. For this example,

we will explore the implementation of the Register and its enterItem method.

Figure: EnterItem Interaction Diagram

189

Mapping Design to Code

 The enterItem message is sent to a Register instance therefore, the enterItem

method is defined in class Register.

public void enterItem(ItemID itemID, int qty)// Parameter Visibility(ItemId)

Message 1:

A getProductDescription message is sent to the ProductCatalog to retrieve a

ProductDescription.

ProductDescription desc = catalog.getProductDescription(itemID);

Message 2:

The makeLineItem message is sent to the Sale.

currentSale.makeLineItem(desc,qty);

 In summary, each sequenced message within a method, as shown on the

interaction diagram, is mapped to a statement in the Java method.

 The complete enterItem method and its relationship to the interaction diagram is

shown in Figure (Next page)

191

Mapping Design to Code
 A java Definition of the Register class is shown in figure below.

Fig: The Register Class

192

Exception and Error Handling

See by yourself

